Atlas Journal of Biology

  Previous Article | Back to Volume | Next Article
  Abstract | References | Citation | Download | Preview | Statistics
Sample volume 2
Title Impacts of Silver Nanoparticle Ingestion on Pigmentation and Developmental Progression in Drosophila
Author S. Catherine Silver Key, Denise Reaves, Fran Turner, John J. Bang
In recent years, the advent of nanomaterial use has increased exposure rates and raised health concerns.  However, the toxicology profiles of many nanomaterials are far from complete for various reasons.  In this study, Drosophila melanogaster, 
commonly called fruit flies, were exposed to one of the most widely used nanomaterials, silver nanopowder (Ag NP), to assess its toxicity and determine if D. melanogaster would be a good model organism for nanotoxicology studies. Comparison of developmental progression amongst groups of flies ingesting different Ag NP concentrations (0.05%/~90 ppm-5.0%/~9000 ppm), revealed that hatch rates were unaffected, but that larval progression was impeded at any dosage of Ag NP.  At 0.3% Ag NP an approximate LD50 was observed.  Additionally, a distinctive phenotype was 
observed among emergent adults (F1 generation) that arose from larvae exposed to Ag NP which included reduced body pigmentation accompanied by shortened life span and abnormal climbing behavior. The phenotype prompted speculation that Ag NPs may affect the dopamine and/or the stress response pathway(s).
Ahamed M, MS Alsalhi and MK Siddiqui (2010a) Silver 
nanoparticle applications and human health. Clin Chim Acta 
411(23/24): 1841-1848.
Ahamed M, R Posgai, TJ Gorey, M Nielsen, SM Hussain and JJ 
Rowe (2010b) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242 (3): 263-269.
AshaRani PV, G Low Kah Mun, MP Hande and S Valiyaveettil 
(2009) Cytotoxicity and genotoxicity of silver nanoparticles 
in human cells. ACS Nano 3 (2): 279-290.
Braydich-Stolle L, S Hussain, JJ Schlager and MC Hofmann 
(2005) In vitro cytotoxicity of nanoparticles in mammalian 
germline stem cells. Toxicol Science 88 (2): 412-419 
Carroll SB (2005) Evolution at two levels: on genes and form. 
PLoS Biol 3 (7): e245.
Chaudhuri A, K Bowling, C Funderburk, H Lawal, A Inamdar, Z 
Wang and JM O’Donnell (2007) Interaction of genetic and 
environmental factors in a Drosophila parkinsonism model. J 
Neurosci 27 (10): 2457-2467.
Chen X, and HJ Schluesener (2008) Nanosilver: a nanoproduct in 
medical application. Toxicol Lett 176 (1): 1-12.
Choi J. E, S Kim, J H. Ahn, P Youn, JS Kang, K Park, J Yi and DY 
Ryu (2009) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 
100 (2): 151-159 
Denman CJ, J McCracken, V Hariharan, J Klarquist, K OyarbideValencia, JA Guevara-Patino and IC Le Poole (2008) HSP70i 
accelerates depigmentation in a mouse model of autoimmune 
vitiligo. J Invest Dermatol 128 (8): 2041-2048. 
Drapeau MD, A Radovic, PJ Wittkopp and AD Long (2003) 
A gene necessary for normal male courtship, yellow, acts 
downstream of fruitless in the Drosophila melanogaster larval 
brain. J Neurobiol 55 (1): 53-72. 
Erickson BE 2009. Nanosilver Pesticides. In Chemical and Engineering News 87(48): 25-26.
Fernandez A, P Picouet and E Lloret (2010) Reduction of the 
spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef 
meat. J Food Prot 73 (12): 2263-2269.
Galvan I and C Alonso-Alvarez (2009) The expression of melanin-based plumage is separately modulated by exogenous 
oxidative stress and a melanocortin. Proc Biol Sci 276 (1670): 
Glassman SJ (2011) Vitiligo, reactive oxygen species and Tcells. Clin Sci (Lond) 120 (3): 99-120.
Han Q, J Fang, H Ding, JK Johnson, BM Christensen and J Li 
(2002) Identification of  Drosophila melanogaster yellow-f 
and yellow-f2 proteins as dopachrome-conversion enzymes.Biochem J 368 (Pt 1): 333-40.
Heng BC, X Zhao, S Xiong, KW Ng, FY Boey and JS Loo (2010) 
Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial 
epithelial cells (BEAS-2B) is accentuated by oxidative stress. 
Food Chem Toxicol 48 (6): 1762-6. 
Jimenez-Del-Rio M, C Guzman-Martinez and C Velez-Pardo 
(2010) The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and 
paraquat. Neurochem Res 35 (2): 227-38.
Jonas, L, C Bloch, R Zimmermann, V Stadie, GE Gross and SG 
Schad (2007) Detection of silver sulfide deposits in the skin of 
patients with argyria after long-term use of silver-containing 
drugs. Ultrastruct Pathol 31(6): 379-84.
Kim B, CS Park, M Murayama and MF Hochella (2010) Discovery and characterization of silver sulfide nanoparticles in 
final sewage sludge products. Environ Sci Technol 44 (19): 
Kim, S, JE Choi, J Choi, KH Chung, K Park, J Yi and DY Ryu (2009) 
Oxidative stress-dependent toxicity of silver nanoparticles in 
human hepatoma cells. Toxicol In Vitro 23 (6): 1076-84.
Kumari A, SK Yadav and SC Yadav (2010) Biodegradable 
polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75 (1): 1-18.
Kumari M, A Mukherjee and N Chandrasekaran (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407 (19): 5243-5246.
Kwon HB, JH Lee, SH Lee, AY Lee, JS Choi and YS Ahn (2009) A 
case of argyria following colloidal silver ingestion. Ann Dermatol 21 (3): 308-310. 
Larese FF, F D’Agostin, M Crosera, G Adami, N Renzi, M Bovenzi and G Maina (2009) Human skin penetration of silver 
nanoparticles through intact and damaged skin. Toxicology 
255 (1/2): 33-37. 
Li T, B Albee, M Alemayehu, R Diaz, L Ingham, S Kamal, M Rodriguez and S Whaley Bishnoi (2010) Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on 
Daphnia magna. Anal Bioanal Chem 398 (2): 689-700.
Liu X, PY Lee, CM Ho, VC Lui, Y Chen, CM Che, PK Tam and 
KK Wong (2010) Silver nanoparticles mediate differential 
responses in keratinocytes and fibroblasts during skin wound 
healing. Chem Med Chem 5 (3): 468-75.
Lloyd V, M Ramaswami and H Kramer (1998) Not just pretty 
eyes: Drosophila eye-colour mutations and lysosomal delivery. Trends Cell Biol 8 (7): 257-259.
Neckameyer W, J O’Donnell, Z Huang and W Stark (2001) Dopamine and sensory tissue development in Drosophila melanogaster. J Neurobio 47 (4): 280-294.
Payne CM, C Bladin, AC Colchester, J Bland, R Lapworth and 
D Lane (1992) Argyria from excessive use of topical silver 
sulphadiazine. Lancet 340 (8811): 126.
Perez RG and TG Hastings (2004) Could a loss of alpha-synuclein function put dopaminergic neurons at risk? J Neurochem 
89 (6): 1318-1324.
Posgai R, M Ahamed, SM Hussain, JJ Rowe and MG Nielsen 
(2009) Inhalation method for delivery of nanoparticles to the 
Drosophila respiratory system for toxicity testing. SciTotal Environ 408 (2): 439-443.
Powers CM, N Wrench, IT Ryde, AM Smith, FJ Seidler and TA 
Slotkin (2010) Silver impairs neurodevelopment: studies in 
PC12 cells. Environ Health Perspect 118 (1): 73-79.
Rand MD (2010) Drosophotoxicology: the growing potential for 
Drosophila in neurotoxicology. Neurotoxicol Teratol 32 (1): 
Rubin GM (2000) Drosophila Genome Sequence Completed. In 
HHMI Research News:
Sharma VK, RA Yngard and Y Lin (2009) Silver nanoparticles: 
green synthesis and their antimicrobial activities. Adv Colloid 
Interface Science 145 (1/2): 83-96.
Sugumaran M (2009) Complexities of cuticular pigmentation in 
insects. Pigment Cell Melanoma Res 22 (5): 523-5.
Sugumaran M, L Giglio, H Kundzicz, S Saul and V Semensi 
(1992) Studies on the enzymes involved in puparial cuticle 
sclerotization in Drosophila melanogaster. Arch Insect Biochem 
Physiol 19 (4): 271-283.
Suh J and FR Jackson (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55 (3): 435-447.
Tang H (2009) Regulation and function of the melanization reaction in Drosophila. Fly (Austin) 3 (1): 105-111.
Tang J, L Xiong, G Zhou, S Wang, J Wang, L Liu, J Li, F Yuan, S Lu, 
Z Wan, L Chou and T Xi (2010) Silver nanoparticles crossing 
through and distribution in the blood-brain barrier in vitro. J 
Nanosci Nanotechnol 10 (10): 6313-6317.
Vermeulen CJ, TI Cremers, BH Westerink, L Van De Zande and 
R Bijlsma (2006) Changes in dopamine levels and locomotor 
activity in response to selection on virgin lifespan in Drosophila melanogaster. Mech Ageing Dev 127 (7): 610-617.
Walter MF, BC Black, G Afshar, AY Kermabon, TR Wright and 
H Biessmann (1991) Temporal and spatial expression of the 
yellow gene in correlation with cuticle formation and dopa 
decarboxylase activity in Drosophila development. Dev Biol 
147 (1): 32-45.
Wittkopp PJ and P Beldade (2009) Development and evolution 
of insect pigmentation: genetic mechanisms and the potential 
consequences of pleiotropy. Semin Cell Dev Biol 20 (1): 65-
Wittkopp PJ, SB Carroll and A Kopp (2003) Evolution in black 
and white: genetic control of pigment patterns in Drosophila. 
Trends Genet 19 (9): 495-504.
Wong SW, PT Leung, AB Djurisic and KM Leung (2010) Toxicities of nano zinc oxide to five marine organisms: influences of 
aggregate size and ion solubility. Anal Bioanal Chem 396 
(2): 609-618.
Wright TR, GC Bewley and AF Sherald (1976) The genetics of 
dopa decarboxylase in Drosophila melanogaster. II. Isolation 
and characterization of dopa-decarboxylase-deficient mutants and their relationship to the alpha-methyl-dopa-hypersensitive mutants. Genetics 84 (2): 287-310.
Wu Y, Q Zhou, H Li, W Liu, T Wang and G Jiang (2009) Effects 
of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using 
the partial-life test. Aquat Toxicol 100 (2): 160-167.
Keywords Silver nanoparticles, exposure, development, pigmentation, Drosophila.
Download Full PDF Download
  Previous Article | Back to Volume | Next Article
Search in articles
Journal Published articles
AJB 31
Journal Hits
AJB 96908
Journal Downloads
AJB 230
Total users online -