The Abraham Zelmanov Journal
Previous Article | Back to Volume | Next Article | |
Abstract | References | Citation | Download | Preview | Statistics | |
Sample volume | 1 |
Title | De Sitter Bubble as a Model of the Observable Universe |
Author | Larissa Borissova |
Abstract | Schwarzschild's metric of the space inside a sphere of incompressible liquid is taken under focus. We consider a particular case of the metric, where the surface of the liquid sphere meets the radius of gravitational collapse calculated for the mass. It is shown that, in this case, Schwarzschild's metric transforms into de Sitter's metric given that the cosmological λ-term of de Sitter's metric is positive (physical vacuum has positive density). Hence, in the state of gravitational collapse, the λ-field (physical vacuum) is equivalent to an ideal incompressible liquid whose density and pressure satisfy the equation of inflation (noting that positive density yields negative pressure). This result is then applied to the Universe as a whole, because it has mass, density, and radius such as those of a collapsar. The main conclusion of this study is: the Universe is a collapsar, whose internal space, being assumed to be a sphere of incompressible liquid, is a de Sitter space with positive density of physical vacuum. |
Citation | |
References | 1. Borissova L. The gravitational field of a condensed matter model of the Sun: The space breaking meets the Asteroid strip. The Abraham Zelmanov Journal, 2009, vol. 2, 224–260. 2. Schwarzschild K. ¨Uber das Gravitationsfeld einer Kugel aus incompressiebler Fl¨ussigkeit nach der Einsteinschen Theorie. Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften, 1916, 424–435 (published in English as: Schwarzschild K. On the gravitational field of a sphere of incompressible liquid, according to Einstein’s theory. The Abraham Zelmanov Journal, 2008, vol. 1, 20–32). 3. Schwarzschild K. ¨Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften, 1916, 189–196 (published in English as: Schwarzschild K. On the gravitational field of a point mass according to Einstein’s theory. The Abraham Zelmanov Journal, 2008, vol. 1, 10–19). 4. Hilbert D. Die Grundlagen der Physik. Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen, Mathematisch-Physikalische Klasse, 1917, 53–76. 5. Stanyukovich K.P. On the problem of the existence of stable particles in the Metagalaxy. The Abraham Zelmanov Journal, 2008, vol. 1, 99–110 (translated from Problemy Teorii Gravitazii i Elementarnykh Chastiz, vol. 1, Atomizdat, Moscow, 1966, 267–279). 6. Zelmanov A. L. Chronometric Invariants: On Deformations and the Curvature of Accompanying Space. Translated from the preprint of 1944, American Research Press, Rehoboth (NM), 2006. 7. Zelmanov A. L. Chronometric invariants and accompanying frames of reference in the General Theory of Relativity. Soviet Physics Doklady, 1956, vol. 1, 227–230 (translated from Doklady Academii Nauk USSR, 1956, vol. 107, no. 6, 815–818). 8. Zelmanov A. L. On the relativistic theory of an anisotropic inhomogeneous universe. The Abraham Zelmanov Journal, 2008, vol. 1, 33–63 (originally presented at the 6th Soviet Meeting on Cosmogony, Moscow, 1959). 9. Landau L. D. and Lifshitz E. M. The Classical Theory of Fields. 4th edition, translated by Morton Hammermesh, Butterworth-Heinemann, 1980. 10. Borissova L. and Rabounski D. Fields, Vacuum, and the Mirror Universe. 2nd edition, Svenska fysikarkivet, Stockholm, 2009. 11. Rabounski D. Hubble redshift due to the global non-holonomity of space. The Abraham Zelmanov Journal, 2009, vol. 2, 11–28. 12. Rabounski D. On the speed of rotation of isotropic space: insight into the redshift problem. The Abraham Zelmanov Journal, 2009, vol. 2, 208–223. |
Keywords | |
Download Full PDF | Download |
Previous Article | Back to Volume | Next Article |
Share |