Business and Economic Horizons

  Previous Article | Back to Volume | Next Article
  Abstract | References | Citation | Download | Preview | Statistics
Volume 13
Issue 1
Online publication date 2017-02-25
Title Description of world GDP rate changes by using discrete dynamic model
Author Anatoly Kilyachkov, Larisa Chaldaeva, Nikolay Kilyachkov
Abstract
The rate of world GDP is changing periodically. A discrete dynamic model (DDM) describes this process. The model is based on the assumption that the global economy has certain “inertia”. This allows us to describe the rate of change of global GDP in the subsequent year as a function of its change in the preceding year. This function can be approximated by using a finite number of terms of its Taylor series. A methodologically more rigorous approach is proposed for approximating the rate of world GDP change on non-overlapping time intervals. Radii of convergence were determined for approximating polynomials for these time ranges. Studies have shown the dependence of the shape of the radius of convergence from the nature of the convergence. DDM has a practical significance because it allows identifying the change in a character of economic dynamics without prior assumptions about the factors driving this trend.
Citation
References
Abramovitz M. (1961). The Nature and Significance of Kuznets Cycles. Economic Development and Cultural Change, 9/3, 225-248.
https://doi.org/10.1086/449905
 
Akaev A.A. (2009). Sovremennyj finansovo-ekonomicheskiy krizis v svete teorii innovacionno-tehnologicheskogo razvitiya ekonomiki i upravleniya innovacionnym processom. In D. Halturina, A. Korotaev (Eds.). Sistemnyj monitoring. Globalnoe i regionalnoe razvitie (pp. 230-258). LIBROKOM Book House, Moscow. (in Russian).
 
Arnold A., Afraymovich V., Ilyashenko Y., & Shilnikov L. (1985). Teorija bifurkacij. Itogi nauki i tehniki VINITI AN SSSR, Moscow. (in Russian).
 
Arnold A., Vasilyev V., Goryunov V., & Lyashko O. (1988). Osobennosti. I. Lokal'naja i global'naja teorii. Itogi nauki i tehniki VINITI AN SSSR, Moscow (in Russian).
 
Arnold A., Vasilyev V., Goryunov V., & Lyashko O. (1989). Osobennosti. II. Klassifikacija i prilozenija.я. Itogi nauki i tehniki VINITI AN SSSR, Moscow. (in Russian).
 
Arnold V. (2009). Teorija katastrof (5th ed.). Editorial URSS, Moscow. (in Russian).
 
Arnold V. (2012). Geometričeskie metody v teorii obyknovennyh differencial'nyh uravnenij (4th ed.). MCMNO Publishing, Moskow. (in Russian).
 
Arrowsmith D., & Place C. (1982). Ordinary Differential Equations. A Qualitative Approach with Applications. Westfield College University of London, Chapman and Hall. London, New York.
 
Bezruchko B., Koronovskiy A., Trubetskov D., & Khramov A. (2010). Put' v sinergetiku (2nd ed.). LIBROKOM Book House, Moscow. (in Russian).
 
Chaldayeva L., & Kilyachkov A. (2012). Unificirovanniy podhod k opisaniyu prirody ekonomivheskih ciklov. Finansy i kredit, 45(525), 2-8. (in Russian).
 
Chaldayeva L., & Kilyachkov A. (2014). Model obratnoy svyazi i ee ispolzovanie dlja opisaniya dinamiki ekonomicheskogo razvitiya. Finansy i kredit, 31(607), 2-8. (in Russian).
 
Danilov Y. (2010). Lekcii po nelinejnoj dinamike (3rd ed.). LIBROKOM Book House, Moscow. (in Russian).
 
Forrester J. (1977). New Perspectives on Economic Growth. In D. Meadows (Eds.), Alternatives to Growth - A Search for Sustainable Futures (pp. 107-121). Cambridge, MA: Ballinger.
 
Haken H. (1978). Synergetics. Introduction and Advanced Topics. Part I. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology (2d ed.). Springer-Verlag, Berlin-Heidelberg-New York. https://doi.org/10.1007/978-3-642-96469-5
 
Haken H. (2004). Synergetics. Introduction and Advanced Topics. Part II. Advanced Topics. Instability Hierarchies of Self-Organizing Systems and Devices. Springer-Verlag, Berlin-Heidelberg-New York. https://doi.org/10.1007/978-3-662-10184-1
 
Hassard B., Kazarinoff N., & Wan Y. (1981). Theory and Applicatons of Hopf Bifurcation. Cambridge University Press, Cambridge, London-New York-New Rochelle-Melbourne-Sydney.
 
Juglar C. (1862). Des Crises commerciales et leur retour periodique en France, en Angleterre, et aux Etats-Unis. Guillaumin, Paris.
 
Kilyachkov A., & Chaldaeva L. (2013). Bifurcational Model of Economic Cycles. North American Academic Journals, Economic Papers and Notes, 13/4, 13-20.
 
Kilyachkov A., Chaldaeva L., & Kilyachkov N. (2015). Opisanie izmeneniy mirovogo VVP na korotkih vremennyh intervalah s pomoshyu diskretnoy dinamicheskoj modeli. Finansovaja analitika: problemy i rešenija, 44(278), 17-31. (in Russian).
 
Kitchin J. (1923). Cycles and Trends in Economic Factors. Review of Economics and Statistics, 5/1, 10-16. https://doi.org/10.2307/1927031
 
Kondratieff N. (1922). Mirovoe hozjajstvo i ego konyunkturi vo vremja i posle voyny. Oblastnoe otdelenie Gosudarstvennogo izdatelstva, Vologda. (in Russian).
 
Kondratieff N. (1984). The Long Wave Cycle. Richardson & Snyder, New York.
 
Kondratieff N., Yakovets Y., & Abalkin L. (2002). Bolshiie cikly konyunkturi i teorija predvidenija. Izbrannye trudy. Èkonomika, Moscow. (in Russian).
 
Korn G., & Korn T. (1968). Mathematical Handbook for Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Review (2d ed.). McGraw-Hill Book Company, New York, San Francisco, Toronto, London, Sidney.
 
Korotayev A., & Tsirel S. (2010a). Kondratevskie volny v mirovoy ekonomicheskoy dinamike. In D. Khalturin, A. Korotayev. Sistemnyj monitoring. Globalnoe i regionalnoe razvitie (pp.189-229). LIBROKOM Book House, Moscow. (in Russian).
 
Korotayev A., & Tsirel S. (2010b). A Spectral Analysis of World GDP Dynamics: Kondratieff Waves, Kuznets Swings, Juglar and Kitchin Cycles in Global Economic Development, and the 2008-2009 Economic Crisis. Structure and Dynamics: eJournal of Anthropological and Related Sciences 4/1, 1-55.
 
Kuznets S. (1930). Secular Movements in Production and Prices. Their Nature and their Bearing upon Cyclical Fluctuations. Houghton Mifflin, Boston.
 
Magnitsky N., & Sidorov S. (2016). Novye metody haoticheskoj dinamiki. Editorial URSS, Moscow.
 
Malinetsky G. (2009). Matematicheskie osnovy sinergetiki. Haos, struktury, vychislitelnyj eksperiment (6th ed.). LIBROKOM Book House, Moscow. (in Russian).
 
Nemytsky V., & Stepanov V. (2004). Kachestvennaja teorija differencialnyh uravneniy (3rd ed.). Editorial URSS, Moscow. (in Russian).
 
Sekovanov V. (2013). Elementy teorii fraktalnyh mnozestv (5th ed.). LIBROKOM Book House, Moscow. (in Russian).
 
Trubetskov D. (2010). Vvedenie v sinergetiku. Haos i struktury (3rd ed.). LIBROKOM Book House, Moscow. (in Russian).
Keywords Economic cycles, attractive fixed points, periodic points, strange attractor, radii of convergence
DOI http://dx.doi.org/10.15208/beh.2017.06
Pages 77-96
Download Full PDF Download
  Previous Article | Back to Volume | Next Article
Share
Search in articles
Statistics
Journal Published articles
BEH 569
Journal Hits
BEH 1184731
Journal Downloads
BEH 42782
Total users online -