Comunicações Geológicas

  Previous Article | Back to Volume | Next Article
  Abstract | References | Citation | Download | Preview | Statistics
Sample volume 1
Title The upper mantle beneath the Mid-Atlantic Ridge in the Azores sector
Author I. RIBEIRO DA COSTA, F.J.A.S. BARRIGA
Abstract
Low magma flow and significant crustal-scale extensional tectonics characterize the Mid-Atlantic Ridge (MAR), favouring seawater circulation down to the upper-mantle and fault-related exposures of serpentinized upper-mantle peridotite (e.g., FRANCIS, 1981; CANNAT, 1993; TUCHOLKE & LIN, 1994; ESCARTÍN & CANNAT, 1999). Samples of such serpentinized ultramafic rocks were collected on two locations of the Azores sector of the MAR: the Rainbow hydrothermal field (36°14'N), and the Saldanha massif (36°34'N).

Textural, mineralogical and crystalchemical features of such serpentinite outcrops from non-transform offsets in the Azores area of the Mid-Atlantic Ridge (MAR) have provided enough evidence to identify their protolith and to characterize the upper mantle beneath this oceanic sector, confirming the relevance of the Azores hotspot on the nature of this mantle sector.

Serpentinized upper mantle exposures on the Rainbow and Saldanha hydrothermal fields, located in the Azores sector of the Mid-Atlantic Ridge (MAR), exhibit pseudomorphic textures and relict mineralogy (Foolivine = 87-92, Enpyroxene = 89-92, Cr#spinel = 46-52) indicative of a dominant refractory spinel-harzburgite protolith, occasionally accompanied by minor dunites and strongly tectonized amphibole-bearing harzburgites. The refractory nature of these ultramafics and modal amphibole metasomatism are consistent with a significant extent of upper mantle partial melting and metasomatic activity on approaching the Azores hotspot, as suggested by previous studies in the area (e.g., MICHAEL & BONATTI, 1985; BONATTI & MICHAEL, 1989; JUTEAU et al., 1990; MÉVEL et al., 1991). Moreover, mantle oxygen fugacities estimated by oxygen barometry in the relict mineralogy of the Rainbow and Saldanha rocks, considering likely harzburgite depths for mantlemelt segregation temperatures of 1200-1330°C (RIBEIRO DA COSTA et al., 2006), also match the data and interpretations of those authors for the upper-mantle beneath the Azores sector of the MAR.
Citation
References
Balhaus, C., Berry, R.F. & Green, D.H. (1991) – High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol., 107: 27-40

Barriga, F.J.A.S., Costa, I.M.A., Relvas, J.M.R.S., Ribeiro, A., Fouquet, Y., Ondréas, H., Parson, L. & the FLORES Scientific Party (1997) – The Rainbow serpentinites and serpentinite-sulphide stockwork (Mid-Atlantic Ridge, AMAR segment): a preliminary report of the FLORES results. Eos Trans. AGU, 78: F832-F833

Barriga, F.J.A.S., Fouquet, Y., Almeida, A., Biscoito, M., Charlou, J.L. Costa, R.L.P., Dias, A., Marques, A., Miranda, J.M., Olu, K., Porteiro, F. & Queiroz, M.G. (1999) – Preliminary results of the Saldanha mission (FAMOUS segment of the MAR 36°30’N). Geophys. Res. Abstr., 1. Eur. Geophys. Soc., Den Haag

Beeson, M.H. & Jackson, E.D. (1969) – Chemical composition of altered chromites from the Stillwater Complex, Montana. Amer. Min., 54: 1084-1100

Bonatti, E., Ligi, M., Brunelli, D., Cipriani, A., Fabretti, P., Ferrante, V., Gasperini, L. & Ottolini, L. (2003) – Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere. Nature, 423: 499-505

Bonatti, E. & Michael, P.J. (1989) – Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet. Sci. Lett., 91: 297-311

Boudier, F. & Nicolas, A. (1995) – Nature of the Moho Transition Zone in the Oman ophiolite. J. Petrol., 36: 777-796

Cannat, M. (1993) – Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J. Geophys. Res., 98: 4163-4172

Cannat, M. & Seyler, M. (1995) – Transform tectonics, metamorphic plagioclase and amphibolitization in ultramafic rocks of the Vema transform fault (Atlantic Ocean). Earth Planet. Sci. Lett., 133: 283-298

Cannat, M., Bideau, D. & Bougault, H. (1992) – Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37’ and 16°52’N. Earth Planet. Sci. Lett., 109: 87-106

Cannat, M., Briais, A., Deplus, C., Escartín, J., Georgen, J., Lin, J., Mercouriev, S., Meyzen, C., Muller, M., Pouliquen, G., Rabain, A. & Silva, P. (1999) – Mid-Atlantic Ridge – Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago. Earth Planet. Sci. Lett., 173: 257-269

Costa, R.L.P. (2001) – Estudo mineralógico e geoquímico da alteração hidrotermal dasa rochas vulcânicas e ultramáficas serpentinizadas do Monte Saldanha (RMA, segmento FAMOUS/ /AMAR). Dissert. Mestrado, Universidade de Lisboa

Coulton, A.J., Harper, G.D. & O’Hanley, D.S. (1995) – Oceanic versus emplacement age serpentinization in the Josephine ophiolite: implications for the nature of the Moho at intermediateand slow spreading ridges. J.Geophys. Res., 100: 22245-22260

Detrick, R.S., Needham, H.D. & Renard, V. (1995) – Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33°N and 40°N. J. Geophys. Res., 100 (B3): 3767-3787

Dick, H.B. & Bullen, T. (1984) – Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., 86: 54-76

DUNGAN, M.A. (1979) – Bastite pseudomorphs after orthopyroxene, clinopyroxene and tremolite. Can. Min., 17: 729-740

Escartín, J. & Cannat, M. (1999) – Ultramafic exposures and the gravity signature of the lithosphere near the Fifteen-Twenty fracture Zone (Mid-Atlantic Ridge, 14º-16,5ºN). Earth Planet. Sci. Lett., 171: 411-424

Fouquet, Y. & Scientific Party (1997) – Cruise report, FLORES cruise, AMORES project of the European MAST III programme Plouzané, IFREMER, DRO/GM

Fouquet, Y., Charlou, J.L., Ondréas, H., Radford-Knoery,  J., Donval, J.P., Douville, E., Appriou, R., Cambon, P., Pellé, H., Landuré, J.Y., Normand, A., Ponsevera, E., German, C., Parson, L., Barriga, F., Costa, I., Relvas,  J. & Ribeiro, A. (1997) – Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36°14’N). EOS, Trans. Am. Geophys. Union, 78: F832 (abstr.)

Francis, T.J.G. (1981) – Serpentinization faults and their role in the tectonics of slow-spreading ridges. J. Geophys. Res., 86(B12): 11616-11622

Frey, F.A. (1984) – Rare earth element abundances in upper mantle rocks. In: Henderson, P. (ed.), Rare Earth Element Geochemis­try. Developments in Geochemistry, vol. 2 (ch. 5): 153-203. Elsevier

Georgen, J.E. & Lin, J. (2002) – Three-dimensional passive flow and temperature structure beneath oceanic ridge-ridge-ridge triple junctions. Earth Planet. Sci. Lett., 204: 115-132

German C.R., Parson, L.M. & the HEAT Scientific Team (1996) – Hydrothermal exploration at the Azores Triple Junction: Tectonic control of venting at slow spreading ridges? Earth. Planet. Sci. Lett. 138: 93–104

Gràcia, E., Bideau, D., Hekinian, R., Lagabrielle, Y. & Parson, L.M. (1997) – Along-axis magmatic oscillations and exposure of ultramafic rocks in a second-order segment of the Mid-Atlantic Ridge (33°43’N to 34°07’N). Geology, 25: 1059-1062

Gràcia, E., Charlou, J.L., Radford-Knoery, J. & Parson, L.M. (2000) – Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38°N-34°N): ultramafic exposures and hosting of hydrothermal vents. Earth Planet. Sci. Lett., 177: 89-103

Gruau, G., Bernard-Griffiths, J. & Lécuyer, C. (1998) – The origin of U-shaped rare earth patterns in ophiolite peridotites: assessing the role of secondary alteration and melt/rock reaction. Geochim. Cosmochim. Acta, 62: 3545-3560

Hellebrand, E., Snow, J.E., Dick, H.J.B. & Hofmann, A.W. (2001) – Coupled major and trace elements as indicators of the extent of melting in mid-ocean ridge peridotites. Nature, 410: 677-681

Hill, R. & Roeder, P. (1974) – The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. J. Geol., 82: 709-729

Jaques, A.L. & Green, D.H. (1980) – Anhydrous melting of peridotite at 0-15 Kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol., 73: 287-310

Johnson, K.T.M., Dick, H.J.B. & Shimizu, N. (1990) – Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res., 95: 2661-2678

Juteau, T. et al. (1990) – Serpentinized, residual mantle peridotites from the MAR Median Valley, ODP Hole 670A (21°02’W, Leg 109): primary mineralogy and geothermometry. In: Proc. ODP: Initial Reports, 106/109: 27-45

Kimball, K.L. (1990) – Effects of hydrothermal alteration on the compositions of chromian spinels. Contrib. Mineral. Petrol., 105: 337-346

McKenzie, D. & Bickle, M.J. (1988) – The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29: 625-679

Menzies, M. (1991) – Oceanic peridotites. In: Floyd, P.A. (ed.), Oceanic Basalts (Ch. 15). Blackie & Son Ltd., Glasgow

Mével, C., Cannat, M., Gente, P., Marion, E., Auzende, J.M. & Karson, J.A. (1991) – Emplacement of deep crustal and mantle rocks on the west median valley wall of the MARK area (MAR, 23°N). Tectonophysics, 190: 31-53

Michael, P.J. & Bonatti, E. (1985) – Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth Planet. Sci. Lett., 73: 91-104

Miranda, J.M., Silva, P.F., Lourenço, N., Henry, B., Costa, R. & SALDANHA Team (2003) – Study of the Saldanha Massif (MAR, 36°34’N): constraints from rock magnetic and geophysical data. Mar. Geophys. Res., 23: 299-318

Moreira, M. & Allègre, C.J. (2002) – Rare gas systematics on Mid Atlantic Ridge (37-40ºN). Earth Planet. Sci. Lett., 198: 401-416

Needham, H.D., Dauteuil, O., Detrick, R. & Langmuir, C. (1992) – Structural and volcanic features of the Mid-Atlantic Ridge rift zone between 40°N and 33°N. EOS, Trans. Amer. Geophys. Union, 43: 552

Onyeagocha, A.C. (1974) – Alteration of chromite from the Twin Sisters dunite, Washington. Amer. Min., 59: 608-612

Parson, L., Gràcia, E., Coller, D., German, C. & Needham, D. (2000) – Second-order segmentation; the relationship between volcanism and tectonism at the MAR, 38°N – 35°40’N.  Earth Planet. Sci. Lett., 178: 231-251

Ribeiro da Costa, I. (2005) – Serpentinization on the Mid-Atlantic Ridge: the Rainbow, Saldanha and Menez Hom sites. Tese de Doutoramento, Universidade de Lisboa, 444 p

Ribeiro da Costa, I., Jesus, A.P., Munhá, J.M. & Barriga, F.J.A.S. (2006) – Oxygen-barometry of the upper mantle beneath the Azores sector of the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 70 (18S): A124.

Spray, J. (1991) – Structure of the oceanic crust as deduced from ophiolites. In: Floyd, P.A. (ed.), Oceanic Basalts (Ch. 4). Blackie & Son Ltd., Glasgow

Tesalina, S.G., Nimis, P., Augé, T. & Zaykov, V.V. (2003) – Origin of chromite in mafic-ultramafic-hosted hydrothermal massive sulphides from the Main Uralian Fault, South Urals, Russia. Lithos, 70: 39-59

Tucholke, B.E. & Lin, J. (1994) – A geological model for the structure of ridge segments in slow-apreading ocean crust. J. Geophys. Res., 99-B: 11937-11958

Waerenborgh, J.C., Figueiras, J., Mateus, A. & Gonçalves, M. (2002) – 57Fe Mössbauer spectroscopy study of the correlation between the Fe3 content and the magnetic properties of natural Cr-spinels. Eur. J. Mineral., 14: 437-446
Keywords harzburgitic oceanic mantle, thermo-barometry, Mid-Atlantic Ridge (MAR)
Download Full PDF Download
  Previous Article | Back to Volume | Next Article
Share
Search in articles
Statistics
Journal Published articles
CG 38
Journal Hits
CG 91474
Journal Downloads
CG 285
Total users online -