Comunicações Geológicas

  Previous Article | Back to Volume | Next Article
  Abstract | References | Citation | Download | Preview | Statistics
Sample volume 1
Title Geochemistry of amphibole asbestos from northeastern Portugal and its use in monitoring the environmental impact of asbestos from quarrying
Author R. J. S. Teixeira, A. M. R. Neiva, M. E. P. Gomes
Abstract At Donai, Pena Maquieira, and Mourisqueiro, in northeastern Portugal, amphibole asbestos minerals are associated with serpentinites, amphibole schists and steatitic rocks. In order to assess the environmental impact of these deposits, the Donai quarry and the talc mines of Pena Maquieira and Mourisqueiro were studied in detail, because long-term exposure to amphibole asbestos is known to cause pulmonary diseases. At Donai, tremolite asbestos occurs in shear zones and faults cutting serpentinites, whereas massive (non-fibrous) tremolite occurs as intercalations associated with amphibole schists, and chloritites. Serpentinites from the Donai quarry are mainly tremolite-free. At Pena Maquieira, tremolite asbestos fills faults cutting serpentinites. At Mourisqueiro, actinolite asbestos occurs within amphibole schists and steatitic rocks in a highly deformed zone. Geological mapping, examinations by petrographic microscope and electron-microprobe, and determinations of SiO2, CaO, and MgO for serpentinites, and CaO and MgO for steatitic rocks will help to assess the presence of admixed asbestos within these rocks. The identification of asbestos is essential in order to exploit these serpentinites and steatitic rocks with minimal disturbance of asbestiform minerals.
Citation
References
Addison, J. & McConnell, E. E. (2008) – A review of carcinogenicity studies of asbestos and non-asbestos tremolite and other amphiboles. Regul. Toxicol. Pharm., 52, pp. S187-S199

Anderson, B. A., Dearwent, S. M., Durant, J. T., Dyken, J. J., Freed, J.A., Moore, S. M. & Wheeler, J. S. (2005) – Exposure pathway evaluations for sites that processed asbestos-contaminated vermiculite. Int. J. Hyg. Environ. Health, 208, pp. 55-65

Bailey, E. H., Kemp, A. J. & Ragnarsdottir, K. V. (1993) – Determination of uranium and thorium in basalts and uranium in aqueous solution by Inductively Coupled Plasma Mass Spectrometry. J. Anal. Atomic Spectrom., 8, pp. 551-556

Blake, D. J., Wetzel, S. A. & Pfau, J. C. (2008) – Autoantibodies from mice exposed to Libby amphibole asbestos bind SSA/Ro52-enriched apoptotic blebs of murine macrophages. Toxicology, 246, pp. 172-179

Browne, K & Wagner, J. C. (2001) – Environmental exposure to amphibole-asbestos and mesothelioma. Can. Mineral. Spec. Publ., 5, pp. 21-28

Camus, M. (2001) – Exposure to commercial chrysotile – Mineralogy, modern products and exposures: Rapporteur’s report. Can. Mineral. Spec. Publ., 5, pp.127-129

Churg, A. (1993) – Asbestos lung burden and disease patterns in man. In: Guthrie Jr., G. D. & Mossman, B. T. (editors). Health effects of mineral dusts. Min. Soc. Am. Rev. Mineral., 28, pp. 410-426

Cudgell, D. W. & Kamp, D. W. (2004) – Asbestos and Pleura. Chest, 125, pp. 1103-1117

Gamble, J. F. & Gibbs, G. W. (2008) – An evaluation of the risks of lung cancer and mesothelioma from exposure to amphibole cleavage fragments. Regul. Toxicol. Pharm., 52, pp. S154-S186

Gianfagna, A., Ballirano, P., Bellatreccia, F., Bruni, B., Paoletti, L. & Oberti, R. (2003) – Characterization of amphibole fibres linked to mesothelioma in the area of Biancavilla, Eastern Sicily, Italy. Min. Mag., 67, pp. 1221-1229

Gibbons, W. (1998) – The exploitation and environmental legacy of amphibole asbestos : A Late 20th Century Overview. Environ. Geochem. Health, 20, pp. 213-230

Klein, C. (1993) – Rocks, minerals, and a dusty world. In: Guthrie Jr., G. D. & Mossman, B. T. (editors). Health effects of mineral dusts. Min. Soc. Am. Rev. Mineral., 28, pp. 7-59

Langer, A. M. (2001) – Health experience of some U. S. and Canadian workers exposed to asbestos: foundation for risk assessment. Can. Mineral. Spec. Publ., 5, pp. 9-20

Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D.; Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laaird, J., Mandarino, J. M. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. & Youzhi, G. (1997) – Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Min. Mag., 61, pp. 295-321

Lewis, A. J., Palmer, M. R., Sturchio, N. C. & Kemp, A. J. (1997) – The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochim. Cosmochim. Acta, 61, pp. 695-706

Luus, K. (2007) – Asbestos: mining exposure, health effects and policy implications. McGill J. Med., 10, pp. 121-126

Marques, F. O., Ribeiro, A. & Munhá, J. M. (1996) – Geodynamic evolution of the continental allochthonous terranes (CAT) of the Bra­gança Nappe Complex NE Portugal. Tectonics, 15, pp. 747-762

McDonald, A. D., Frey, J. S., Wooley, A. J. & McDonald, J. C. (1983) – Dust exposure and mortality in an American factory using chrysotile, amosite and crocidolite in mainly textile manufacture. Br. J. Indust. Med., 40, p. 368

Munhá, J. M. & Ribeiro, M. L. (1984) – Blueschists in the Iberian Variscan chain (Trás-os-Montes, NE Portugal). Com. Serv. Geol. Portugal, 70: 31-53

Neiva, J. M. C. (1948) – Rochas e minérios da região Bragança – Vinhais. Serviço de Fomento Mineiro, 14, pp. 1-251

Nolan, R. P., Langer, A. M., Ross, M., Addison, J. & Gee, J. B. L. (2007) – Non-occupational exposure to commercial amphibole asbestos and asbestos-related disease: is there a role for grunerite asbestos (amosite)? P. Geologist Assoc., 118, pp. 117-127

Pfau, J. C., Sentissi, J. J., Li, S., Calderon-Garcidue, L., Brown, J. M. & Blake, D. J. (2008) – Asbestos-Induced Autoimmunity in C57Bl/6 Mice. J. Immunotoxicol., 5, pp. 129-137

Quesada, C. (1992) – Evolución tectónica del Macizo Ibérico (Una historia de crecimiento por acrecencia sucesiva de terrenos durante el Proterozoico superior y el Paleozoico). In: Gutiérrez Marco, J. C., Saavedra, J. & Rábano, I. (editors). Paleozoico Inferior de Ibero-América. Universidad de Extremadura, Spain, pp. 173-190

Ribeiro, A. (1974) – Contribution à l´étude tectonique de Trás-os-Montes Oriental. Mem. Serv. Geol. Portugal, 24 (Nova Série)

Ribeiro, A., Pereira, E. & Dias, R. (1990) – Allochtonous sequences: Structure in the Northwest of the Iberian Peninsula. In: Dallmeyer, D., Martinez Garcia, E. (editors). Pre-Mesozoic Geology of Iberia. Springer-Verlag, Berlin Heidelberg, pp. 220-246

Ross, M. & Nolan, R. P. (2003) – History of asbestos discovery and use and asbestos-related disease in context with occurrence of asbestos within ophiolite complexes. Geol. Soc. Am. Spec. Pap., 373, pp. 447-470

Ross, M. & Virta, R. L. (2001) – Occurrence, production and uses of asbestos. Can. Mineral. Spec. Publ., 5, pp. 79-88

Santos, J. F. H. P. (1998) – Geoquímica de litologias básicas e ultrabásicas da Unidade Alóctone Superior do Maciço de Bragança. Unpublished Ph.D. thesis, University of Aveiro, Portugal

Schumacher, J. C. (1997) – Appendix 2 – The estimation of the proportion of ferric iron in the electron-microprobe analysis of amphiboles. In: Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laaird, J., Mandarino, J. M. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. & Youzhi, G. G. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Min. Mag., 61, pp. 312-321

Skinner, H. C. W., Ross, M. & Frondel, C. (1988) – Asbestos and other fibrous materials: mineralogy, crystal chemistry, and health effects. Oxford University Press, New York, United States of America

Teixeira, R. J. S. (2000) – Serpentina, asbesto e talco: Impacte ambiental das suas explorações no Nordeste de Portugal. Unpublished M.Sc. thesis, University of Coimbra, Portugal

Van Gosen, B. S., Lowers, H. A., Sutley, S. J. & Gent, C. A. (2004) – Using the geologic setting of talc deposits as an indicator of amphibole asbestos content. Environ. Geol., 45, pp. 920-939

Vilela de Matos, A. & Alves, P. H. (1988) – Valorização das jazidas de talco - COMITAL: 1º relatório anual de progresso - Acções preparatórias do Programa Integrado de Desenvolvimento Regional de Trás-os-Montes. Unpublished report, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal

Wicks, F. J. (1998) – Report on an international workshop on the health effects of chrysotile asbestos: contribution of science to risk management. Newsl. Mineral. Assoc. Can., 58, pp. 6-7

Williams-Jones, A. E., Normand C., Clark, J. R., Vali, H., Martin, R. F., Dufresne, A. & Nayebzadeh, A. (2001) – Controls of amphibole formation in chrysotile deposits: evidence from the Jeffrey mine, Asbestos, Quebec. Can. Mineral. Spec. Publ., 5, pp. 89-104
Keywords Tremolite and actinolite asbestos, amphibole schists, serpentinites, steatitic rocks
Download Full PDF Download
  Previous Article | Back to Volume | Next Article
Share
Search in articles
Statistics
Journal Published articles
CG 38
Journal Hits
CG 91476
Journal Downloads
CG 285
Total users online -