Europhysics Letters

  Previous Article | Back to Volume | Next Article
  Abstract | References | Citation | Download | Preview | Statistics
Sample volume 2
Title Quantum critical scaling and the Gross-Neveu model in 2 1 dimensions
Author H. Chamati, N. S. Tonchev
Abstract The quantum critical behavior of the (2 1)-dimensional Gross-Neveu model in the vicinity of its zero-temperature critical point is considered. The model is known to be renormalisable in the large-N limit, which offers the possibility to obtain expressions for various thermodynamic functions in closed form. We have used the concept of finite-size scaling to extract information about the leading temperature behavior of the free energy and the mass term, defined by the fermionic condensate and determined the crossover lines in the coupling ()-temperature (T) plane. These are given by , where  denotes the critical coupling at zero temperature. According to our analysis no spontaneous symmetry breaking survives at finite temperature. We have found that the leading temperature behavior of the fermionic condensate is proportional to the temperature with the critical amplitude . The scaling function of the singular part of the free energy is found to exhibit a maximum at  corresponding to one of the crossover lines. The critical amplitude of the singular part of the free energy is given by the universal number , where ζ(z) and Cl2(z) are the Riemann zeta and Clausen's functions, respectively. Interpreted in terms of the thermodynamic Casimir effect, this result implies an attractive Casimir “force”. This study is expected to be useful in shedding light on a broader class of four fermionic models.
[1] Hertz J. A., Phys. Rev. B, 14 (1976) 1165.
[2] Sondhi S. L., Girvin S. M., Carini J. P. and Shahar D., Rev. Mod. Phys., 69 (1997) 315.
[3] Sachdev S., Quantum Phase Transitions (Cambridge University Press, Cambridge, England) 1999.
[4] Brankov J. G., Danchev D. M. and Tonchev N. S., The Theory of Critical Phenomena in FiniteSize Systems: Scaling and Quantum Effects, Series in
Modern Condensed Matter Physics, Vol. 9 (World Scientific, Singapore) 2000.
[5] Fisher M. E. and de Gennes P.-G., C. R. Acad. Sci. Paris: S´er. B, 287 (1978) 207.
[6] Krech M., The Casimir Effect in Critical Systems (World Scientific, Singapore) 1994.
[7] Tonchev N. S., J. Optoelectron. Adv. Mater., 9 (2007) 11.
[8] Chamati H., J. Phys. A: Math. Theor., 41 (2008) 375002.
[9] Chamati H., Danchev D. M. and Tonchev N. S., Eur. Phys. J. B, 14 (2000) 307.
[10] Chamati H. and Tonchev N. S., ArXiv eprint (2009) arXiv:0903.5229 [cond-mat.stat-mech], http://arxiv. org/abs/0903.5229.
[11] Palov ´ a L., Chandra P. ´ and Coleman P., Phys. Rev. B, 79 (2009) 075101.
[12] Castro Neto A. H. and Fradkin E., Nucl. Phys. B, 400 (1993) 525.
[13] Gross D. J. and Neveu A., Phys. Rev. D, 10 (1974) 3235.
[14] Rosenstein B., Warr B. J. and Park S. H., Phys. Rep., 205 (1991) 59.
[15] Moshe M. and Zinn-Justin J., Phys. Rep., 385 (2003) 69.
[16] Rosenstein B., Warr B. J. and Park S. H., Phys. Rev. Lett., 62 (1989) 1433.
[17] Whittaker E. T. and Watson G. N., A Course of
Modern Analysis, 4th edition, Cambridge Mathematical Library (Cambridge University Press, Cambridge, England) 1996.
[18] Rosenstein B., Warr B. J. and Park S. H., Phys. Rev. D, 39 (1989) 3088.
[19] Le Bellac M., Thermal Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, England) 2004.
[20] Singh S., Pathria R. K. and Fisher M. E., Phys. Rev. B, 33 (1986) 6415.
[21] Lewin L., Polylogarithms and Associated Functions (Elsevier, New York) 1981.
[22] Clausen Th., J. Reine Angew. Math. (Crelle’s Journal), 1832 (1832) 298, doi: 10.1515/crll.1832.8.298.
[23] Johnson K., Acta Phys. Pol. B, 6 (1975) 865.
[24] Gundersen S. A. and Ravndal F., Ann. Phys. (N.Y.), 182 (1988) 90.
[25] Sachdev S., Phys. Lett. B, 309 (1993) 285.
Download Full PDF Download
  Previous Article | Back to Volume | Next Article
Search in articles
Journal Published articles
EPL 102
Journal Hits
EPL 236763
Journal Downloads
EPL 352
Total users online -