Indian Journal of Science and Technology

  Previous Article | Back to Volume | Next Article
  Abstract | References | Citation | Download | Preview | Statistics
Sample volume 1
Title Modelling of thermal behaviour of a direct solar drier possessing a chimney: Application to the drying of cassava
Author K.B. Koua, P. Gbaha, E.P.M. Koffi, W.F. Fassinou, S. Toure
Abstract
The aim of this work is to study a direct solar drier possessing a chimney for agricultural products. The establishment of heat and mass balances leads to a system of two differential equations translating the thermal behaviour of the solar chimney. This system is completed with another differential equation giving the evolution of the product temperature according to the time. Then, the mathematical model is validated by comparing the theoretical results with the experimental ones. Cassava has been chosen as the product to be dried because of its various uses in the food. The results showed that the drying of the product is affected by the drying air temperature and the product characteristics.
Citation
References
1. Akpinar EK Bicer Y and Yildiz C (2003) Thin layer 
drying of red pepper. J. Food Engg. 59, 99-104.
2. Barnwal P and Tiwari GN (2008) Grape drying using 
hybrid photovoltaic thermal (PV/T) greenhouse dryer: 
an experimental study. Solar Energy. 82,1131-1144.
3. Caputo AC Scacchia F and Pelagagge PM (2003) 
Disposal of by-products in olive oil industry: waste-toenergy solutions. Appl. Therm. Engg. 23(2), 197-214.
4. Dissa AO Desmorieux H Savadogo PW Segda BG 
and Koulidiati J (2010) Shrinkage, porosity and density 
behaviour during convective drying of spirulina.  J. 
Food Engg. 97, 410-418.
5. Duffie JA and Beckman WA (1991) Solar engineering 
of thermal process.  John Wiley and Sons. NY. pp: 
197-249.
6. Gbaha P Yobouet Andoh H Kouassi Saraka J 
Kamenan Koua B and Toure S (2007) Experimental 
investigation of a solar dryer with natural convection 
heat flow. Renew. Energy. 32, 1817 – 1829.
7. Hottel HG and Whillier A (1958) Evaluation of flat  –
plate collector performance. Trans. Conf. Use of solar 
Energy II, Thermal Process, University of Arizona. 
USA. pp: 74 – 104.
8. Karim MA and Hawlader MNA (2004) Development of 
solar air collectors for drying applications.  Energy 
Convers. Manage. 45, 329 -344.
9. Knudson DL and Rempe JL (2002) In Vessel retention 
modeling capabilities of SCDAP/RELAP5-3D. 
Proceedings of ICONE10 tenth Intl. Conf. on nuclear 
Engg. Arlington. VA. USA. pp: 1-9.
10.Koua KB (2007) Etude expérimentale d’un séchoir 
solaire direct utilisant un circulateur thermique. Thèse 
de Doctorat de troisième cycle. Laboratoire d’Energie 
Solaire. Université de Cocody - Abidjan, Côte d’Ivoire.
11.Koua KB Fassinou WF Gbaha P and Touré S (2007) 
Etude expérimentale de la cinétique de séchage du 
manioc dans un séchoir solaire direct muni d’un 
circulateur thermique. Rev. Ivoir. Sci. Technol. 09,11-26.
12.Kouhila M Belghit and Daguenet M (2001) 
Modélisation et expérimentation du fonctionnement 
d’un séchoir solaire convectif pour plantes 
aromatiques. IEEE. pp ; 181 –188.
13.Koyuncu T (2006) Performance of various designs of 
solar air heaters for crop drying applications. Renew. 
Energy.  31, 1073-1088.
14.Kumar A and Tiwari GN (2006) Thermal modelling of a 
natural convection greenhouse drying system for 
jiggery: an experimental validation.  Solar Energy.
80,1135-1144.
15.Lewis WK (1921)The rate of drying of solids materials. 
Ind. Eng. Chem.13 (5), 427 – 432.
16.Mac Adams WH (1954) Heat transmission. 3rd ed. Mc 
Graw Hill, NY.
17.Mohanraj M and Chandrasekar P (2008) Comparison 
of drying characteristics and quality of copra obtained 
in a forced convection solar drier and sun drying.  J. 
Sc. & Ind. Res. 67,381-385.
18.Philip JR and De Vries DA (1957) Moisture movement 
in porous materials under temperature gradient. 
Trans. Amer. Geophys. Union. 38 (2), 222 – 232.19.Rakotondramirana H Morau D and Adelard L (2005) 
Modélisation du séchage solaire : application au 
séchage en couche mince des boues solides des 
stations d’épuration.  12ème
Journées Internationales 
de thermique, Tanger. Maroc. pp : 203 – 206.
20.Rosa GS Moraes MA and Pinto LAA (2010) Moisture 
sorption properties of chitosan.  LWT-Food Sci. 
Technol. 43, 415-420.
21.Sherwood T K (1929) the drying of solids 1. Int. Engg. 
Chem. 21 (1), 12–16.
22.Sherwood TK (1929) the drying of solids 2. Int. Engg. 
Chem. 21 (2), 976–980.
23.Sherwood TK (1931) Application of the theoretical 
diffusion equations of drying of solids. Trans. Am. Inst. 
Chem. Engrs. 27, 190 – 202.
24.Smitabhindu R Janjai S and Chankong V (2008) 
Optimization of a solar-assisted drying system for 
drying bananas. Renew. Energy. 33, 1523-1531.
25.Swinbank WC (1963) Long wave radiation from clear 
skics. QJ Roy Meteor Soc. pp: 89.
26.Tiris C Tiris M and Dincer I (1996) Experiments on a 
new small-scale solar dryer.  Appl. Th. Engg.16 (2), 183– 187.
27.Touré S and Serge Kibangu- Nkembo (2004) 
Comparative study of natural solar drying of cassava, 
banana and mango. Renew. Energy. 29, 975 – 990.
28.Youcef Ali S, Messaoudi H, Desmons JY, Abene A 
and Leray M (2001) Determination of the average 
coefficient of  internal moisture transfer during the 
drying of a thin bed of potato slices. J. Food Engg. 45, 
95–101.
Keywords Drying kinetic, Mathematical model, Moisture Content, Cassava, Solar
Download Full PDF Download
  Previous Article | Back to Volume | Next Article
Share
Search in articles
Statistics
Journal Published articles
IJST 64
Journal Hits
IJST 191797
Journal Downloads
IJST 1320
Total users online -