Indian Journal of Science and Technology
Previous Article | Back to Volume | Next Article | |
Abstract | References | Citation | Download | Preview | Statistics | |
Sample volume | 1 |
Title | Low frequency oscillation at a multi machine environment by using UPFC tuned based on simulated annealing |
Author | Hasan Fayazi Boroujeni, Ahmad Memaripour, Meysam Eghtedari, Elahe Behzadipour |
Abstract | Unified Power Flow Controller (UPFC) is one of the most viable and important Flexible AC Transmission Systems (FACTS) devises. Application of UPFC in single machine and multi machine electric power systems has been investigated with different purposes such as power transfer capability, damping of Low Frequency Oscillations (LFO), voltage support and so forth. But, an important issue in UPFC applications is to find optimal parameters of UPFC controllers. This paper presents the application of Unified Power Flow Controller (UPFC) to enhance dynamic stability of a multi-machine electric power system. A supplementary stabilizer based on UPFC (like power system stabilizer) is designed to reach the defined purpose. An intelligence optimization method based on Simulated Annealing (SA) is considered for tuning the parameters of UPFC supplementary stabilizer. Several nonlinear time-domain simulation tests visibly show the ability of UPFC in damping of power system oscillations and consequently stability enhancement. |
Citation | |
References | 1. Al-Awami A (2007) A particle-swarm based approach of power system stability enhancement with UPFC. Electrical Power and Energy Sys. 29, 251-259. 2. Eldamaty AA, Faried SO and Aboreshaid S (2005) Damping power system oscillation using a Fuzzy logic based unified power flow controller. IEEE CCGEI 2005 1, 1950-1953. 3. Faried SO and Billinton R (2009) Probabilistic technique for sizing FACTS devices for steady-state voltage profile enhancement. IET Generation, Transmission & Distribution. 3, 385 – 392. 4. Farrag MEA and Putrus G (2011) An on-line training radial basis function neural network for optimum operation of the UPFC. European Transactions on Electrical Power. 21, 27-39. 5. Guo J and Crow ML (2009) An improved UPFC control for oscillation damping. IEEE Transactions on Power Sys. 25, 288 – 296. 6. Hao J, Bao SL, Yi-Xin N and Chen C (2008) Improvement of transient stability by unified power flow controller based on hamiltonian system theory. European Transactions on Electrical Power. 18, 617–635. 7. Hingorani NG and Gyugyi L (2000) Understanding FACTS. IEEE Press. 8. Jiang S, Gole AM, Annakkage UD and Jacobson DA (2010) Damping performance analysis of IPFC and UPFC controllers using validated small-signal models. IEEE Transactions on Power Delivery. 26, 446-454. 9. Jiang X, Chow JH, Edris A and Fardanesh B (2010) Transfer path stability enhancement by voltagesourced converter-based FACTS controllers. IEEE transactions on Power Delivery. 25, 1019 – 1025. 10. Kundur P (1993) Power system stability and control. McGraw-Hill, Inc. NY. pp: 700-822. 11. Mahran AR, Hogg BW and El-sayed ML (1992) Coordinate control of synchronous generator excitation and static var compensator. IEEE Trans. Energy Conversion. 7(4), 615-622. 12. Mehdi Nikzad, Shoorangiz Shams Shamsabad Farahani, Mehdi Ghasemi Naraghi, Mohammad Bigdeli Tabar and Ali Javadian (2011) Comparison of robust control methods performance in the UPFC controllers design. Indian J.Sci.Technol. 4 (6), 670- 676. Domain site: http://www.indjst.org. 13. Mehraeen S, Jagannathan S and Crow ML (2010) Novel dynamic representation and control of power systems with FACTS Devices. IEEE Transactions on Power Sys. 25, 1542-1554. 14. Nabavi-Niaki A and Iravani MR (1996) Steady-state and dynamic models of unified power flow controller for power system studies. IEEE Transactions on Power Sys. 11(4), 1937-1950. 15. Reza Hemmati, Sayed Mojtaba Shirvani Boroujeni, Hamideh Delafkar and Amin Safarnezhad Boroujeni (2011) Stabilizer design based on UPFC using simulated annealing. Indian J.Sci.Technol. 4 (7), 815-819. Domain site: http://www.indjst.org. 16. Singh JG, Tripathy P, Singh SN and Srivastava SC (2009) Development of a fuzzy rule based generalized unified power flow controller. European Transactions on Electrical Power. 19, 702–717. 17. Tambey N and Kothari ML (2003) Damping of power system oscillation with unified power flow controller. IEE Generation, Transmission & Distribution. 150, 129-140. 18. Wang HF (1999) Damping function of UPFC. IEE Generation, Transmission & Distribution. 146,129-140. 19. Wang HF (2000) A unified model for the analysis of FACTS devices in damping power system oscillation Part III: unified power flow controller, IEEE Transaction Power Delivery. 15(3), 978-983. 20. Zarghami M, Crow ML, Sarangapani J, Yilu L and Atcitty S (2010) A novel approach to inter-area oscillations damping by UPFC utilizing ultracapacitors. IEEE Transactions on Power Sys. 25, 404 – 412. |
Keywords | Unified Power Flow Controller; Low Frequency Oscillations; Multi Machine Electric Power System; Simulated Annealing. |
Download Full PDF | Download |
Previous Article | Back to Volume | Next Article |
Share |