Indian Journal of Science and Technology

  Previous Article | Back to Volume | Next Article
  Abstract | References | Citation | Download | Preview | Statistics
Sample volume 1
Title Ranking the voice of customer with fuzzy DEMATEL and fuzzy AHP
Author Ali Reza Shahraki, Morteza Jamali Paghaleh
Abstract
Organizations and large companies consider “voice of customer” is an important factor for growth. The aim of our study is to achieve defined and suitable models of ranking the key criteria of the voice of customer. The method is based upon Fuzzy multiple criteria decision making (FMCDM). Fuzzy decision making trial and evaluation laboratory (Fuzzy DEMATAL) method, a useful group decision making tool, has been used to transform the complex interactions between the criteria of the problems of practical life into a visible structured model. The results  indicate that in the presented case study, we could apply Fuzzy DEMATAL method to estimate the quantity of the effects of direct and indirect relations of elements with each other and promote the quality of relations and interrelations of the group.
Citation
References
1. Anagnostopoulos KP, Gratziou M and Vavatsikos AP 
(2007) Using the fuzzy analytic hierarchy process for 
selecting wastewater facilities at prefecture level. Eur.
Water. 19, 15-24.
2. Bae SM, Hab SH and Park SC (2005)  A web-based 
system for analyzing the voices of call center 
customers in the service industry.  Expert Sys. Appl. 
28, 29–41. doi:10.1016/j.eswa.2004.08.008. 
3. Bell SJ, Auh S and Smalley K (2005) Customer 
relationship dynamics: Service quality and customer 
loyalty in the context of varying levels of customer 
expertise and switching costs. J. Acad. Marketing Sci.
33(2), 169-183. Doi: 10.1177/0092070304269111. 
4. Bove LL and Robertson NL (2005) Exploring the role 
of relationship variables in predicting customer voice 
to a service worker. J. Retailing & Consumer Services. 
12, 83–97. doi:10.1016/j.jretconser.2004.03.003. 
5. Celik M and Er ID (2009) Structuring fuzzy integrated 
multi-stages evaluation model on academic personnel 
recruitment in MET institutions. Expert Sys. Appl. 36, 
6918–6927. doi:10.1016/j.eswa.2008.08.057. 
6. Chakraborty G, Srivastava P and Marshall F (2007) 
Are drivers of customer satisfaction different for 
buyers/users from different functional areas?.  J. 
Business & Indus. Marketing. 1(22), 20-28.
7. Chen CH and Yan W (2008) An in-process customer 
utility prediction system for product conceptualization. 
Expert Sys. Appl. 34, 2555–2567. 
doi:10.1016/j.eswa.2007.04.019. 
8. Chen JK and Chen S (2010) Using a novel conjunctive 
MCDM approach based on DEMATEL, fuzzy ANP, 
and TOPSIS as an innovation support system for 
Taiwanese higher education.  Expert Sys. Appl. 37, 
1981–1990. doi:10.1016/j.eswa.2009.06.079. 
9. Chen YC, Lien HP and Tzeng GH (2009) Measures 
and evaluation for environment watershed plan using a novel
hybrid MCDM model. Expert Sys. Appl.doi:10.1016/j.eswa.
2009.04.068.
10.Chen-Yi H and GwoHshiung T (2007) FMCDM 
with Fuzzy DEMATEL Approach for customers’ 
choice behavior model. Intl. J. Fuzzy Sys. 9(4), 
236-246. 
11.Chiou HK, Tzeng GH and Cheng DC (2005) 
Evaluating sustainable fishing development 
strategies using, fuzzy MCDM approach. Omega. 
33, 223–234. doi:10.1016/j.omega.2004.04.011. 
12.Chiu YJ, Chen HC and 
Tzeng GH (2006)  Marketing strategy based on
customer behavior for the LCD-TV. Intl. J. Managt. & 
Decision Making.  7, 143–165.
doi:10.1504/IJMDM.2006.009140. 
13.Chou CC (2010) Application of FMCDM model to 
selecting the hub location in the marine transportation: 
A case study in southeastern Asia.  Mathematical & 
Comput. Modeling.  51, 791-801.
doi:10.1016/j.mcm.2009.10.015. 
14.Chou CC (2007) A fuzzy MCDM method for solving 
marine transshipment container port selection 
problems. Appl. Maths. & Computation. 186, 435-444. 
doi:10.1016/j.amc.2006.07.125. 
15.Chua TC and Lin Y (2009) An extension to Fuzzy 
MCDM.  Comput. & Maths. Appl.  57(12), 445-454.
doi:10.1016/j.camwa.2008.10.076. 
16. Coussement K and Poel DVD (2008) Improving 
customer complaint management by automatic email 
classification using linguistic style features as 
predictors. Decision Support Sys. 44, 870–882.
doi:10.1016/j.dss.2007.10.010. 
17.Coussement K and Poel DVD (2008) Integrating the 
voice of customers through call center emails into a 
decision support system for churn prediction. Info. & 
Managt. 45, 164–174. doi:10.1016/j.im.2008.01.005. 
18.David J Burns DJ and Lewis Neisner L (2006) 
Customer satisfaction in a retail setting. Intl. J. Retail & 
Distribution Managt. 34(1), 49-66.
doi:10.1108/09590550610642819.
19.Hsieh TY, Lu ST and Tzeng GH (2004) Fuzzy MCDM 
approach for planning and design tenders selection in 
public office buildings. Intl. J. Project Managt. 22, 573–
584. doi:10.1016/j.ijproman.2004.01.002. 
20.Kahraman C (2007) Editorial fuzzy set applications in 
industrial engineering.  Info. Sci.  177(7), 1531-1532.
doi:10.1016/j.ins.2006.09.010.
21.Lai X, Xie M, Tan KC and Yang B (2008) Ranking of 
customer requirements in a competitive environment. 
Comput. & Indus. Engg.  54, 202–214.
doi:10.1016/j.cie.2007.06.042. 
22.Lee YC, Hu HY, Yen TM and Tsai CH (2008) Kano’s 
and decision making trial and evaluation laboratory 
applied to order winners and qualifiers improvement: A 
study of the computer industry. Info. Technol. J. ISSN 
1812-5638. 7(5), 702-714.
23.Li CW and Tzeng GH (2009)  Identification of a 
threshold value for the DEMATEL method using the 
maximum mean de-entropy algorithm to find critical 
services provided by a semiconductor.  Intellectual 
Property  Mall.  36, 9891–9898 .
doi:10.1016/j.eswa.2009 .01.073.
24.Lin CJ and Wu WW (2008) A causal analytical method 
for group decision-making under fuzzy environment. 
Expert Sys. Appl. 34, 205-213.
doi:10.1016/j.eswa.2006.08.012. 
25.Lin HF (2010) An application of fuzzy AHP for 
evaluating course website quality. Comput. & Edu. 54, 
877–888. doi:10.1016/j.compedu.2009.09.017. 
26.Lin CL and Tzeng GH (2009) A value-created system 
of science (technology) park by using DEMATEL. 
Expert Sys. Appl. doi:10.1016/j.eswa.2008.11.040. 36, 
9683–9697.
27. Lin ZP, Wang R and Tseng ML (2009) Determination 
of a cause and effect decision making model for 
leisure farm’s service quality in Taiwan. Wseas Trans. 
Business & Econ. ISSN. 2(6), 1109-9526.
28.Liu HT (2009) The extension of fuzzy QFD: From 
product planning to part deployment.  Dept. of Indus. 
Engg. & Managt. Expert Sys. Appl.  doi: 
10.1016/j.eswa.2009.02.070. 1(1), 1-57.
29.Opricovic S and Tzeng GH (2004) Decision aiding 
compromise solution by MCDM methods: A 
comparative analysis of VIKOR and TOPSIS. 
European J. Operational Res. doi: 10.1016/S0377-
2217(03)00020-1. 156, 445–455.
30.Önüt S, Efendigil T and Kara SS (2010) A combined 
fuzzy MCDM approach for selecting shopping center 
site: An example from Istanbul, Turkey.  Expert Sys. 
Appl. doi:10.1016/j.eswa.2009.06.080. 37, 1973–1980.
31.Özdağoğlu A and Özdağoğlu G (2007) Comparison of 
AHP and FUZZY AHP forthemulti-criteria decision 
makingprocesses with linguistic evaluations.  İstanbul 
Ticaret Üniversitesi Fen Bilimleri Dergisi. 6(11), 65-85.
32.Roos I, Friman M and Edvardsson B (2009) Emotions 
and stability in telecom-customer relationships.  J. 
Service Managt. doi: 10.1108/09564230910952771. 
33.Sevastjanov P and Figat P (2007) Aggregation of 
aggregating modes in MCDM:Synthesis of Type 2 and 
Level 2 fuzzy sets.  Omega.  35, 505– 523.
doi:10.1016/j.omega.2005.09.005. 
34.Shieh JI, Wub HH and Huang KK (2010) A DEMATEL 
method in identifying key success factors of hospital 
service quality.  Knowledge-Based Sys. 23, 277–282.
doi:10.1016/j.knosys.2010.01.013. 
35. Shih HS (2008) Decision support incremental analysis 
for MCDM with an application to group TOPSIS. Eur.
J. Operational Res.  186, 720–734.
doi:10.1016/j.ejor.2007.02.012. 
36.Shyur HJ and Shih HS (2006) A hybrid MCDM model 
for strategic vendor selection.  Maths & Comput. 
Modeling.  44(7–8), 749–761.
doi:10.1016/j.mcm.2005.04.018. 
37.Tsai WH and Chou WC (2009) Selecting management 
systems for sustainable development in SMEs:A novel 
hybrid model based on DEMATEL, ANP, and ZOGP. 
Expert Sys. Appl. 36, 1444–1458.
doi:10.1016/j.eswa.2007.11.058. 
38.Tseng M (2009) A causal and effect decision making 
model of service quality expectation using grey-Fuzzy 
DEMATEL approach.  Expert Sys. Appl. 36, 7738–
7748 .doi:10.1016/j.eswa.2008.09.011. 
39. Tseng ML (2009) Using the extension of DEMATEL to 
integrate hotel service quality perceptions into a 
cause– effect model in uncertainty. Expert Sys. Appl.
36, 9015–9023. doi:10.1016/j.eswa.2008.12.052.
40.Vaidya OS and Kumar S (2006) Analytic hierarchy 
process:  An overview of applications.  European J. 
Operational Res.  169, 1–29. 
doi:10.1016/j.ejor.2004.04.028.
41. Vasant P, Bhattacharya A, Sarkar B and Mukherjee 
SK (2007) Detection of level of satisfaction and 
fuzziness patterns for MCDM model with modified 
flexible S-curve MF. Appl. Soft Comput. 7, 1044–1054. 
doi:10.1016/j.asoc.2006.10.005. 
42.Wu HY, Tzeng GH and Chen YH (2009)  A fuzzy 
MCDM approach for evaluating banking performance 
based on Balanced Scorecard. Expert Sys. Appl. 36, 
10135–10147. doi:10.1016/j.eswa.2009.01.005. 
43. Wu WW (2008) Choosing knowledge management 
strategies by using a combined ANP and DEMATEL 
approach.  Expert Sys. Appl.  35(3), 828–835. 
doi:10.1016/j.eswa.2007.07.025. 
44. Yang JL, Chiu HN, Tzeng GH and Yeh RH (2008) 
Vendor selection by integrated fuzzy MCDM 
techniques with independent and interdependent 
relationships. Info. Sci.  178, 4166–4183.
doi:10.1016/j.ins.2008.06.003. 
Keywords Fuzzy DEMATEL, Fuzzy AHP, FMCDM, Voice of Customer
Download Full PDF Download
  Previous Article | Back to Volume | Next Article
Share
Search in articles
Statistics
Journal Published articles
IJST 64
Journal Hits
IJST 191810
Journal Downloads
IJST 1320
Total users online -