FINANCIAL PERFORMANCE OF FIRMS

DETERMINANTS OF THE FINANCIAL PERFORMANCE OF FIRMS LISTED AT THE NAIROBI SECURITIES EXCHANGE

ALOYS AYAKO1, THOMAS GITHUI1, GEORGE KUNGU2

1Catholic University of Eastern Africa, Kenya
2University of Nairobi, Kenya

JEL CLASSIFICATIONS: G0, G11, G12, G32

KEYWORDS: Financial performance, liquidity, leverage, Nairobi Security Exchange, return on assets, return on equity

ABSTRACT: This study analyzed the factors influencing the performance of 41 non-financial companies listed on the Nairobi Securities Exchange (NSE) using panel data over the period 2003 to 2013. A Hausman test results suggested the application of a random effects model for ROA and a fixed effects model for ROE. The empirical results of the estimation of both ROA and ROE show that corporate governance was statistically significant in determining the performance of firms and it had the expected sign (Positive). The leverage of the firm also had the expected negative sign and was statistically significant in explaining the performance of companies. Firm size and liquidity were however found to be statistically insignificant in determining the performance of these firms. Consistent with previous studies, the study concluded that board size, board independence and liquidity are key determinants of a firm’s financial performance. Consequently, the study recommends that a firm should ensure optimal board size, board independence (i.e., increase the number of non-executive directors and sound liquidity management. The study recommends comparative studies to be undertaken on the factors influencing the financial performance of the financial and non-financial companies listed at the Nairobi securities exchange as well as those not listed. In addition, it recommends that further studies could be extended to analyze the factors influencing the performance of companies at cross-country level such as within the East African Community.

http://dx.doi.org/10.15208/pieb.2015.08

Introduction

Growing empirical evidence shows a positive finance-growth nexus (Demirguc-Kunt and Levine, 1996; Caporale et al., 2004; Levine, 2005; Yamane, 2009; McKinnon, 1973; Shaw, 1973). The evidence shows that a sound financial system is not just correlated to growth but actually causes growth. Specifically, it has been observed that well functioning capital markets increase economic efficiency, investment and growth. Capital markets assist in price discovery, liquidity provision, reduction in transaction costs and risk transfer. They also reduce information cost through generation and dissemination of information on firms leading to efficient markets in which prices incorporate all in information (Yartey and Adjasi, 2007; Garcia and Liu, 1999;) Based
on the evidence and like other emerging economies, Kenya has fostered the growth of its capital market as a strategic development goal (GoK, 1986). It has implemented significant reforms to underpin the growth including liberalization (ending the long period of financial repression), modernization of the Nairobi Securities Exchange (NSE) (e.g. automation of trading, diversification of listed securities, and dematerialization of stocks) and the development of regulatory and supervisory frameworks (Capital Markets Authority Act, Cap. 485a).

The successful implementation of these reforms, together with improved macroeconomic fundamentals and capital market related reforms such as privatization of state-owned enterprises (SOEs) has been reflected in significant growth and sophistication of the country’s capital market. Despite the intense reform efforts, the country’s capital market remains narrow and shallow. The contribution of both stock market and private bond market to growth (GDP) financing has been estimated at less than 1% (Ngugi et al., 2010). The implementation of further reforms to both broaden and deepen of the country’s capital market would be essential to underpin the goal of Vision 2030 of achieving an annual economic growth rate of 10% with a 30% investment rate.

While the NSE is one of the fastest growing bourses in the emerging markets and is the largest in East Africa, it remains relatively thin and shallow with less than 50 listed companies. This market, initially started in the 1920’s by the British as an informal market for Europeans only, has experienced steady reforms for its growth and modernization in the country’s post-independence era. The growth of the market of the market has facilitated mobilization of resources to provide long term capital for financing investments. During the first three years of independence in 1963, the stock market experienced steady growth, rekindling confidence in the market. The exchange also handled a number of highly oversubscribed issues. However, in 1972, growth of the market halted when the oil crisis introduced inflationary pressures in the economy that depressed the shares. The growth performance of the market was exacerbated by the introduction of the capital gains tax in 1975, which was later suspended in 1985 and has been re-introduced in 2015.

Statement of the problem

The Kenya government, together with companies and individuals in the private sectors has put concerted efforts in ensuring the existence of a favorable environment for doing business in the country. Consequently, while most firms listed in the NSE have an improved in performance, others have experienced declining fortunes and some have even been delisted from the NSE over the last decade. Significant efforts to turn around such companies or even liquidate them have focused mainly on financial restructuring. However, managers and practitioners still lack adequate guidance for attaining optimal financing decisions (Kibet, Kibet, Tenei, and Muthol, 2011). Although many problems experienced by the companies that have been put under statutory management (occasioning loss of stakeholders’ wealth and the overall investors’ confidence in the NSE) were largely attributed to financing (Chebi, Kipchumba and Wasike, 2011), there was no systematic empirical evidence to support this.

While past studies (Almajali et al., 2012; Liargovas and Skandalis, 2008) have identified both internal and external factors as key determinants of a firm’s performance little has been done with regard to factors influencing the financial performance of listed companies, especially in developed economies, these studies have produced mixed results. This study therefore sought to establish the factors that impact the performance of the companies listed at the NSE, covering a period 2003-2013. The study aims to answer the following questions: (i) What factors
affect the performance of firms listed in the NSE?; (ii) What are the policy implications of the results of (i) above?

Literature review

A firm’s financial performance is critical to its health and survival. A firm’s high performance reflects its effectiveness and efficiency in the management of its resources for operational, investment and financing activities (Naser and Mokhtar, 2004). While there exists a large and growing body of theoretical and empirical literature the financial performance of listed firms, it is inconclusive on both the measurement and determinants of firms’ financial performance (Liargovas and Skandalis, 2008). Past studies have proxied the financial performance of firms by ROA, ROE, ROI and Tobin’s Q (Tobin, 1956). These studies remain inconclusive on which of these proxies is theoretically and/or empirically the best measure of a firm’s financial performance. Consequently, previous studies have employed all or some of these proxies of the firm’s financial performance.

Past studies have identified both firm specific (internal) factors (including corporate governance, leverage, and liquidity and firm size) and industry specific (external) factors (including growth, concentration, capital intensity, advertising intensity, etc.) as key determinants of the financial performance based on capital structure relevance; working capital management; and organizational behavior theories. The capital structure relevance theories underpinning the identified factors include the tradeoff theory (Chirinko and Singha, 2000), pecking order theory (Myers, 1984), free cash flow theory (Jensen, 1986; Dorff, 2007), agency theory (Berle and Means, 1932; Elliot et al., 2002) and the Modigliani and Miller capital structure relevance theory (Modigliani and Miller, 1958,1963; Myers, 2001; Brigham and Ehrhardt, 2004) and emphasize the role of leverage on the firm’s performance.

The working capital management theories of Baumol (1952), Tobin (1956) Miller-Orr (1966) Dash and Ravipati (2009), Stone (1972) Srinivasan and Kim (1986) and Opler et al. (1999) emphasize the role of liquidity in the firm’s performance. The organizational behavior theories capture the multidimensional aspects of the firm’s performance including the effects of structure (corporate governance), systems, firm size, history (age), and organizational climate factors (e.g. top management team characteristics, motivation, group dynamics, decision-making practices, leadership, communication flow, goal emphasis and planning, job conditions, etc.) (Hansen and Wernerfelt, 1989; Hambrick and Mason, 1984).

Previous empirical literature is inconclusive on the relative importance of firm level (internal) and industry level (external) determinants of the firm’s financial performance during any state of the economy. While some studies (Hawawini, Subramanian, and Verdin, 2003) argue that industry or external firm factors outplay internal factors in influencing the firm’s performance, others (Opler and Titman, 1994) argue that internal (firm specific) factors outplay external factors in driving the firms’ performance.

In an effort to validate MM theory in Kenya, Maina and Kondongo (2013) investigated the effect of debt-equity ratio performance of firms listed at the Nairobi Securities exchange. A census of all firms listed at the Nairobi Security Exchange from year 2002-2011 was the sample. The study found a significant negative relationship between capital structure and all measures of performance. The results collaborated MM theory that indeed capital structure is relevant in determining the performance of a firm. The study further found that that firms listed at NSE used more short-term debts than long term.

Abdul (2012) conducted a similar study to determine the relationship between capital structure decisions and the performance of firms in Pakistan. The study concluded that financial leverage has a significant negative relationship with firm performance as
measured by ROA, GM, and Tobin’s Q. The relationship between financial leverage and firm performance as measured by the return on equity (ROE) was negative but not statistically significant. In another study, Javed and Akhtar (2012) explored the relationship between capital structure and financial performance. They concluded that there is a positive relationship between financial leverage, financial performance, and growth and size of the companies. The study, which focused on the Karachi Stock Exchange in Pakistan, used correlation and regression tests on financial data. The findings of the study are consistent with the agency theory.

Impact of corporate governance and on organizational performance has attracted extensive research (Dalton and Dalton, 2011; Daily and Dalton, 1994; Bhagat and Dalton, 2008; Dailyand Dalton, 1994). Daily and Dalton (ibid) did an assessment on the corporate governance in manufacturing firms in the USA. Corporate governance was found to be positively related with business survival. Liargovas and Skandalis (2008) did a study on the financial performance and size of manufacturing firms in Greece. They found that financial performance of majority of the firms was affected by firm size. They argued that firm size is a basis of competitive advantage in the sense that larger companies tend to be more efficient than their smaller counterparts and have better resources to survive economic downturns.

Nosa and Ose (2010) did a study on the effect of capital structure on corporate Performance of during economic downturns in Nigeria. Stratified random sampling was used to select 20 firms from which 200 respondents were sampled. The findings indicated that leverage has a significant and negative relationship with firm’s performance.

Finally, the majority of the studies have focused on the insurance and manufacturing sectors in the developed economies. The studies have not given a clear picture on how the various factors may affect performance of firms. Although, locally, there have been a few empirical studies conducted on the determinants of the financial performance of the firm, these have focused on unlisted firms (Ogeto, 2003; Koros, 2001). The current study filled a research gap by investigating the factors that affect performance of firms listed in the NSE.

The government of Kenya, together with companies and individuals in the private sectors has put concerted efforts in ensuring the existence of a favorable environment for doing business in Kenya and, as a result we have seen an improvement in performance of most companies listed at the NSE. At the same time, a number of companies, however, are experiencing declining fortunes and some have even been delisted from the NSE over the last decade. Significant efforts to turn around such companies or even liquidating them have focused mainly on financial restructuring. However, managers and practitioners still lack adequate guidance for attaining optimal financing decisions (Kibet, Kibet, Tenei and Muthol, 2011), yet many problems experienced by the companies put under statutory management were largely attributed to financing (Chebii, Kipchumba and Wasike, 2011).

This situation has led to a loss of shareholders’ wealth and the overall investors’ confidence in the NSE. In Kenya, however, we have seen a good performance in other sectors especially banking, and the insurance sectors. However, the overall financial performance of listed companies in Kenya is somehow weak expect for some companies which accomplished some considerable revenue streams. A number of studies (Almajali et al., 2012; Liargovas and Skandalis, 2008) have been done with regard to factors affecting the financial performance of listed companies, especially in developed economies, but these studies have produced mixed results. This study therefore sought to establish the factors that affect the performance of listed companies at the NSE, first by excluding financial institutions such as banks and insurance companies and instead focusing on the 44 non-financial companies, and secondly by introducing other variables such as the firm size and corporate
governance, covering a period between 2003-2013. Specifically, the study aims to establish the effect of board size, board independence, debt to equity ratio, liquidity and firm size on the financial performance of companies as proxied by return on assets (ROA) and return on equity (ROE).

Methodology

Research design

This study adopted an explanatory non-experimental research design to investigate the factors influencing the performance of firms listed at the Nairobi Securities Exchange, Kenya. Explanatory research seeks to establish causal relationship between variables (Saunders et al., 2009; Robson 2002). According to Kerlinger and Lee (2000) an explanatory non-experimental research design is appropriate where the researcher is attempting to explain how the phenomenon operates by identifying the underlying factors that produce change in it in which case there is no manipulation of the independent variable.

Empirical model

The following Random Effects panel regression models were specified:

\[ROA_{it} = \alpha_0 + \beta_1 BS_{it} + \beta_2 BI_{it} + \beta_3 LEV_{it} + \beta_4 LIQ_{it} + \beta_5 FRMSIZ_{it} + \varepsilon_{it} \]
\[ROE_{it} = \alpha_0 + \beta_1 BS_{it} + \beta_2 BI_{it} + \beta_3 LEV_{it} + \beta_4 LIQ_{it} + \beta_5 FRMSIZ_{it} + \varepsilon_{it} \]

Where:

- \(ROA_{it} \) - Return on assets of company \(i \) at time \(t \)
- \(ROE_{it} \) - Return on Equity of company \(i \) at time \(t \)
- \(BS_{it} \) - Board size of company \(i \) at time \(t \)
- \(BI_{it} \) - Board Independence of company \(i \) at time \(t \)
- \(LEV_{it} \) - Leverage of company \(i \) at time \(t \)
- \(LIQ_{it} \) - Liquidity level of company \(i \) at time \(t \)
- \(\alpha_0 \) - Constant term
- \(\beta \)'s - Coefficients of the explanatory variables
- \(\varepsilon_{it} = \nu_{it} + u_{it} \) - composite error term
- \(\nu_{it} \) - Between-firm time-varying unobserved random error term (IID random effects); \(\text{Cov}(X_{it}, \nu_{it}) = 0 \)
- \(u_{it} \) - Within-firm time-varying unobserved (idiosyncratic) random error term (it is assumed to fulfill all the assumptions for standard OLS error terms i.e. \(u_{it} \) is IID).

Data collection

The study utilized panel data which consisted of time series and cross-section data. The data for all the variables in the study were extracted from published annual reports and financial statements of the companies listed in the NSE covering the years 2003 to 2013. The data was obtained from the NSE handbooks for the period of reference. The financial statements from which the data was extracted include the income statement, statement of financial position, and notes to the accounts. The data extraction was based on a document review guide.
Data analysis

Being interval in nature, the data was analyzed using descriptive statistics, correlation analysis, and panel multiple regression analysis. Given that classical panel regression model methodology was adopted for this study a set of other classical parametric assumptions/characteristics of the data were performed to ensure its suitability for the regression analysis. To confirm the other parametric nature of the data, we tested for normality, multicollinearity, heteroscedasticity and autocorrelation. We also tested for the RE specification ROA (Equation 1) and ROE (Equation 2) using the Hausman test. The estimation of the chosen fixed and random effects models was based on STATA 11.0 software. The results of the diagnostic and regression analyses are presented below.

Empirical results

Diagnostic tests of parametric data

Test for normality of residuals

The classical linear regression assumptions require that the data be normally distributed. Therefore to ascertain that residuals are normally distributed a Kolmogorov-Smirnov test was performed. The Table 1 below indicates that the variables are normally distributed given that the p-values are greater than 5 percent.

<table>
<thead>
<tr>
<th>Most Extreme Differences</th>
<th>Board Size</th>
<th>Board Independence</th>
<th>Liquidity</th>
<th>Firm size</th>
<th>Leverage</th>
<th>ROA</th>
<th>ROE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td>.100</td>
<td>.173</td>
<td>.258</td>
<td>.302</td>
<td>.316</td>
<td>.147</td>
<td>.293</td>
</tr>
<tr>
<td>Positive</td>
<td>.100</td>
<td>.066</td>
<td>.258</td>
<td>.270</td>
<td>.290</td>
<td>.105</td>
<td>.206</td>
</tr>
<tr>
<td>Negative</td>
<td>-.078</td>
<td>-.173</td>
<td>-.195</td>
<td>-.302</td>
<td>-.316</td>
<td>-.147</td>
<td>-.293</td>
</tr>
</tbody>
</table>

Kolmogorov-Smirnov Z 2.088 3.619 5.201 6.164 6.175 2.989| 5.889|
Asymp. Sig. (2-tailed) .326 .432 .823 .475 .135 .573| .081|

Test for multicollinearity

The other assumption stipulated for classical regression models is that the variables should not be highly correlated. Multicollinearity among the variables is said to exist if the reported coefficients of the Pearson correlation exceed 0.8. The Table 2 below shows the Pearson correlation coefficients which were below 0.8 and it was thus concluded that multicollinearity was not a problem in the data.

<table>
<thead>
<tr>
<th></th>
<th>Board size</th>
<th>Board independence</th>
<th>Liquidity</th>
<th>Firm size</th>
<th>Leverage</th>
<th>ROA</th>
<th>ROE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Size</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board Independence</td>
<td>0.743**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquidity</td>
<td>-0.338**</td>
<td>-0.241**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm size</td>
<td>0.443**</td>
<td>0.333**</td>
<td>-0.110*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage</td>
<td>0.057</td>
<td>0.087</td>
<td>-0.124*</td>
<td>0.130*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROA</td>
<td>0.122*</td>
<td>0.044*</td>
<td>0.091</td>
<td>-0.015</td>
<td>-0.289*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ROE</td>
<td>0.109*</td>
<td>0.076*</td>
<td>0.062</td>
<td>0.039</td>
<td>-0.524**</td>
<td>0.659**</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: ** - Correlation is significant at the 0.01 level (2-tailed). * - Correlation is significant at the 0.05 level (2-tailed).
Testing for heteroscedasticity

The study tested for panel level Heteroskedasticity using the A Modified Wald test. The null hypothesis of this test was that the error variance was Homoskedastic. The Modified Wald test produced a chi-square value of 22000.31 with a p-value of 0.0000 for model ROA and a chi-square of 56834.15 with a p-value of 0.0000 for model ROE. The chi-square value was statistically significant at 1 percent level for both models and hence the null hypothesis of constant variance was rejected to signify the existence of Heteroskedasticity in the study data as recommended by Poi and Wiggins (2001). To correct for Heteroskedasticity, the study used robust standard errors.

Test for autocorrelation

The study used the Wooldridge test for autocorrelation to test the presence of autocorrelation. The null hypothesis of this test was that there was no first order autocorrelation in the data. The F statistic value was 0.217 for ROA model and 12.020 for ROE Model with an associated p-value of 0.6438 and 0.0013 for Model ROA and ROE, respectively. Given that the p-value of the F test for ROE was significant and thus indicating the presence of autocorrelation the study corrected for this violation of classical linear regression model assumption by using of lagged variables.

Hausman test

In order to choose between fixed and random effects model for model ROA, Hausman test was used. The null hypothesis of the Hausman test was that the random effects model was preferred to the fixed effects model. For ROA model, Hausman test reported a chi-square of 5.57 with a p-value of 0.3503 implying that at 5 percent level, the chi-square value obtained was statistically insignificant. The researcher therefore failed to reject the null hypothesis that random effects model was preferred to fixed effect model for ROA as recommended by Greene (2008). Similarly, in order to choose between the fixed and random effects models for model ROE, the Hausman test was used. Hausman test reported a chi-square value of 28.18 with a p-value of 0.0017 implying that the chi-square value was statistically significant at 5 percent level of significance. Hence the null hypothesis that random effects model was preferred to fixed effect model for ROE model was rejected and thus the fixed effects model was deemed appropriate.

Panel regression results

The panel regression results as presented in Table 3 indicated that board size was positively and significantly related to return on assets and the return on equity. The study also found that board independence was also positively and significantly related to return on assets as well as on the return on equity. The results of the study therefore indicated that corporate governance as proxied by board size and board independence are significant determinants of financial performance of firms quoted at the Nairobi securities exchange. The study findings are in tandem with the findings of Daily and Dalton (2008), who also found that corporate governance in manufacturing firms in USA, were positive and significant in explaining the performance of these firms.
DETERMINANTS OF THE FINANCIAL PERFORMANCE OF FIRMS LISTED AT THE NAIROBI SECURITIES EXCHANGE

TABLE 3. PANEL REGRESSION RESULTS FOR MODEL ROA AND MODEL ROE

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROA</td>
<td>ROE</td>
</tr>
<tr>
<td>Board size</td>
<td>0.0144**</td>
<td>0.0132**</td>
</tr>
<tr>
<td></td>
<td>(2.95)</td>
<td>(2.01)</td>
</tr>
<tr>
<td>Board independence</td>
<td>0.0731**</td>
<td>0.233**</td>
</tr>
<tr>
<td></td>
<td>(2.68)</td>
<td>(2.61)</td>
</tr>
<tr>
<td>Liquidity</td>
<td>0.00407</td>
<td>-0.00137</td>
</tr>
<tr>
<td></td>
<td>(1.06)</td>
<td>(-0.15)</td>
</tr>
<tr>
<td>Leverage</td>
<td>-0.0227***</td>
<td>-0.104**</td>
</tr>
<tr>
<td></td>
<td>(-4.99)</td>
<td>(-3.43)</td>
</tr>
<tr>
<td>Lnfirm size</td>
<td>0.00784</td>
<td>0.0525</td>
</tr>
<tr>
<td></td>
<td>(1.10)</td>
<td>(1.87)</td>
</tr>
<tr>
<td>Lag Board size</td>
<td>0.0268</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.24)</td>
<td></td>
</tr>
<tr>
<td>Lag Board independence</td>
<td>-0.103</td>
<td>(-0.28)</td>
</tr>
<tr>
<td>Lag Liquidity</td>
<td>0.000481</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Lag Leverage</td>
<td>0.0103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.00)</td>
<td></td>
</tr>
<tr>
<td>Lag Lnfirm size</td>
<td>0.0688*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.44)</td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>0.150</td>
<td>0.00714</td>
</tr>
<tr>
<td></td>
<td>(1.39)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>N</td>
<td>375</td>
<td>331</td>
</tr>
<tr>
<td>R^2</td>
<td></td>
<td>0.109</td>
</tr>
</tbody>
</table>

Note: t statistics in parentheses. *p<0.05, **p<0.01, ***p<0.001

The study also found that leverage had a negative and significant relationship with the Return on Assets (ROA) as well as the Return on Equity (ROE). This finding is also consistent with findings of Nosa and Ose (2010) who also found capital structure to be significant and negative in determining the performance of Nigerian firms. The results are further consistent with the findings of Abdul (2012) who also concluded that financial leverage has a significant negative relationship with firm performance as measured by ROA for firms in Pakistan. The study finds that the firm size and liquidity are insignificant in explaining the financial performance.

Conclusion

Consistent with previous studies, the study concluded that board size had a significant effect on firm performance. Hence, firms with big board sizes are more likely to report higher return on assets compared to firms with small board sizes. In addition, big board sizes influence return on equity positively. Therefore firms with big board sizes are more likely to report higher return on equity. The probable reason is that big board sizes facilitate generation of diverse opinions which affects the firm performance positively.

Secondly, it was similarly concluded that board independence had a significant effect on firm performance. Firms which have an independent board are more likely to report higher Return on Assets (ROA) compared to firms with relatively low board independence. In addition, board independence influences ROA as well as ROE positively. Therefore firms whose boards are independent are more likely to report
higher ROA and a higher ROE. The probable reason is that board independence is likely to reduce agency costs as better control is exercised on behalf of the finance providers.

Thirdly, the study concluded that liquidity had no significant effect on firm performance. In addition, liquidity influence return on assets positively while its influence on return on equity is negative. Lastly, the study concluded that firm size had an insignificant effect on firm performance. Hence, bigger firms do not outperform smaller firms. However, the lag of firm size was found to be statistically significant.

Recommendations

Based on the findings, the study proposes four recommendations. Firstly, given that board size was significant in influencing the firm performance, the study recommends that firms should ensure that they have an optimal board size so as to improve on their financial performance. Secondly, given that the board independence was significant, it recommends that the number of non-executive directors be increased as this increases board independence and thus resulting in a scenario where diverse opinions are obtained on running the firm. Thirdly, the study recommends that despite the fact that current investments by firms do not influence performance at that period, they should invest more since its lagged effect was positive and statistically significant, implying that the returns from the investments will improve the firm’s financial performance in the subsequent periods.

Finally, the study recommends that further studies should be undertaken to compare the factors influencing the financial performance of the financial as well as the non-financial companies listed at the Nairobi securities exchange as well as those not listed. In addition further studies could be extended to analyze the factors affecting the performance of companies at cross-country level such as within the East African Community.

References

Ogeto D.M., 1994. Financial performance of public enterprises and privately owned firms compared, Unpublished MBA project, University of Nairobi

Robson C., 2002. Real world research: A resource for social scientist and practitioners, Research Oxford Blackwell

